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ABSTRACT 

Let ~ be a supermultiplicative Orlicz function such that the function 

t ~-+ qo(~/t) is equivalent to a convex function. Then each complex n x n 

matrix T -- (vij)i,j satisfies the following eigenvalue estimate: 

li(X~(T))}~=lli~ _< Cli(li(r~j)}'=lii~. )j'_-lli~7. 

Here, ~ ,  stands for Young's conjugate function of ~, ~ is the minimal 

submultiplieative function dominating q0 and C > 0 a constant depending 

only on ~. For the power function ~(t) = t p, p _> 2 this is a celebrated 

result of Johnson, Kbnig, Maurey and Retherford from 1979. In this 

paper we prove the above result within a more general theory of related 

estimates. 
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1. P r e l i m i n a r i e s  

We use standard notation and notions from Banach space theory. For 1 _< p < oo 

its conjugate number p~ is defined by the equality 1/p+ 1/p ~ -- 1. If X is a Banach 

space, then X'  denotes its dual space, and for Banach spaces X and Y we mean 

by T: X --+ Y that  T is a linear and continuous operator between these two 

spaces, with dual operator T':  Y'  --+ X' ;  the collection of all such operators T is 

denoted by L(X, Y). If we write X ~-+ Y, then we assume that  X C Y and that  

the identity map id: X --+ Y is continuous. For an operator T: X --+ X on an 

n-dimensional Banach space X we denote by A I ( T ) , . . . ,  An(T) the collection of 

its eigenvalues, counted according to their algebraic multiplicity and arranged in 

decreasing order of their absolute values, i.e., [AI(T)I _> IA2(T)[ > . . .  > IAn(T)I. 

By a Banach sequence space we mean a complex Banach lattice E modelled 

on the set of natural  numbers N which contains a sequence x with supp x = N. 

E is said to be symmetric provided that  IlxllE = IIx*llE for all x C E,  where x* 

denotes the decreasing rearrangement of x. The n-th standard unit vector in E is 

denoted by e~ and the linear span of the first n standard unit vectors (equipped 

with the induced norm) by En. 
For the theory of Orlicz functions and Orlicz spaces we refer to [16]. Two func- 

tions f ,  g: [0, oo) -+ [0, co) are called equivalent whenever there exist constants 

a , b , c , d  > 0 such that  f(t)  <_ ag(bt) < cf(dt) for all t E [0, cc). A continu- 

ous and convex function ~: [0, co) -+ [0, co) with ~-1({0}) = {0} is called an 

Orlicz function. It  is said to be submultiplicative, respectively, supermultiplica- 

tive, if there exists a constant C > 0 such that  for all s, t > 0 the inequality 

~(st) < C~(s)~(t), respectively, ~(st) > C~(s)~(t), holds. An Orlicz function 

satisfies the A2-condition, written ~ E A2, if supt>0 ~(2t)/~p(t) < co. The 

function ~,:  [0, co) -+ [0, co] defined by 

: =  s u p ( s t  - 
s > O  

is Young's conjugate function of ~ which takes finite values provided that  

l i m t - ~  p(t)/t  = ec. 
Recall that  for an Orlicz function ~ the vector space 

oo 

g~ := {x E cl~; E ~([xnl/c) < co for some ~ > 0} 
n = l  

together with the Minkowski functional 

oo 

[[x[[e~ := inf{~ > O; E ~([x,~]/e) _< 1} 
n = l  
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forms a symmetric Banach sequence space--the Orlicz sequence space associated 

with ~. It is an easy excercise to see that equivalent Orlicz functions give the 

same Orlicz spaces (with equivalent norms). 

2. Genera l  e s t i m a t e s  

Let E,  F and G be Banach sequence spaces and T = (rij) be an n • n matrix. 

Our general aim is to give upper estimates of 

A E ( T ) : =  ~ A i ( T ) e i  E 
i=1 

in terms of 

j = l  i = l  

To start, we need two further definitions. Let X be a Banach lattice and E be a 

Banach sequence space such that ~2 ~-+ E. Then X is said to be (E, 2)-concave, 

if there exists a constant C > 0 such that for arbitrarily many xl . . . .  , xn ~ X 

(1) ~ l l x k l l x e k  E_C< ( ~ [ x k [ 2  1/2~] 
X" k=l k=l 

For E = ~2 this gives the well-known notion of 2-concavity, and more generally, 

for E = ~q, 2 <_ q < cc the notion of cotype q as we will see later on. 

For a Banach sequence space E such that  g2 ~-+ E an operator T: X -+ Y 

between Banach spaces is called (E, 2)-summing, if there exists a constant C > 0 

such that for finitely many and arbitrary x l , . . . ,  Xn E X the following inequality 

holds: 

n ( ~ . ~  )1/2 
It < c sup (2) k=l TxkllYek E -  IIm'llx,<l_ k=l 

In this case we denote by 7rE,2(T) the smallest constant C > 0 satisfying (2). 

The particular case E = gr, r > 2 gives the classical notion of absolutely (r, 2)- 

summing operators (cf. [7, Chapter 10]). 

PROPOSITION 1: Let E and F be Banach sequence spaces such that ~2 ~-+ F and 

E is (F, 2)-concave. Then there exists C > 0 such that for all Banach spaces X 

and all T: X -4 E~ 

n 

(a) 7rF,2(T: X < C IIT%llx,e  z" 
i=1 
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P r o o f i  Take  X l , . . . , x  m 6 X .  T h e n  

n n 

IITx~IiE = II Y ~ T '  ek(X~)ekllE = II ~ X'k(X~)ekllE, 
k=l  k=l  

where x' k := T'ek 6 X ' .  For each k for which x~ # O, set z' k := x'k/llx'kllX' e x '  
n ! i and z~ := 0 otherwise, and let Yi := ~7]k=1 IlXkllX'Zk(Xi)ek 6 E. By the (F, 2)- 

concavity of E there exists C > 0 such that 

m 

i=1 i=1 
m 

c .  (E 
i=1 
n 

- C  Z IIx~c]lx, ( ~ \ 1 / 2  - . Iz'k(xi)l  2 )  ~k E 
k=l  i----1 

<c. sup (LIx(x )l) �9 
II~'llx'- <x i=x k=a 

which gives (3). | 

To proceed we need the following result from [5] which generalizes an inequality 

due to Khnig. For the sake of completeness we indicate a short proof. Recall 

that  for an operator T: X --+ Y between Banach spaces the n-th approximation 

number an(T) is defined by 

an(T) := inf{llT - Tnll;Tn: X --~ Y has rank < n}, 

and the n-th Weyl-number xn (T) by 

x,~(T) := sup{an(TS);  [IS: g~ ~ X[[ _< 1}. 

PROPOSITION 2: Let E be a Banach sequence space such that e2 ~ E. Then 

for every ( E , 2)-summing operator T and all n 

(4)  AE(n)xn(T)  <_ rE,2(T), 

where ,X~(,,) := II E L 1  ~11~. 

Proof." Consider first the case where the operator T is defined on g2, say T: g2 --+ 

Y for some Banach space Y. The proof of [15, 2.a.3] or [19, 2.7.1] yields that  
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for c > 0 there exists an orthonormal system (fk) in e2 such that ak(T) <_ 

(1 + c)llTfk[[y for all k (a result due to Pisier). This implies 

~-~ ak(T)ek E ~- 7CE'2(T)' 
k----1 

since by Bessel's inequality suPll~,llt2<l ~"~=1 [(x']fk)] 2 --< 1. Now if for an 

arbitrary (E, 2)-summing operator T: X --+ Y and ~ > 0 we choose S: 22 --+ X 

with IISII = 1 and xn(T) <_ (1 + e)an(TS),  then by the monotonicity of the 

approximation numbers 

n 

(1 +~)-I)~E(n)xn(T ) < AE(n)an(TS) ~_ ~~ak (TS )ek  E 
k = l  

<_ ~E,2(TS) < ~r~,2(T), 

which gives the claim. | 

The following crucial inequality connecting eigenvalues and Weyl-numbers is 

due to Weyl (for E = fp) and Khnig (general case, see [15, 2.a.8]). For simplicity 

we state a finite-dimensional version only. Let E be a symmetric Banach sequence 

space and T: X --+ X an operator on an n-dimensional Banach space X. Then 

n 

(5) AE(T) _< 2 v ' ~  ~-~xk(T)ek E" 
k=l  

Combining (3), (4) and (5), we immediately obtain the following general estimate 

(by considering a matrix T = (rij) as an operator T: En --4 En): 

PROPOSITION 3: Let E and F be Banach sequence spaces such that F is sym- 

metric with 22 "-4 F and E is (F, 2)-concave. Then there exists a constant C > 0 

such that for all n and every complex n x n matrix T = (rij) 

1 
(6) AF(T) <_ CI] Z Y---777ei]IF]]T]IE[E']" 

i=I AFRO} 

The use of Marcinkiewiez sequence spaces enables us to give upper bounds for 

single eigenvalues. 

PROPOSITION 4: Let E and F be Banach sequence spaces such that F is 

symmetric with 22 ~-4 F and E is (F, 2)-concave. Then there exists a constant 

C > 0 such that for all n, every complex n x n matrix T = (Tij) and all 1 < k < n 

(7) ,Ak(T)I < C1 ~ 1 T 
q ~ 
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Proof: For an increasing sequence (Ai) of positive scalars the symmetric 

Marcinkiewicz sequence space mx is the space of all scalar sequences x = (xi) 

for which IlXllm~ := supi_>l x**Ai < ~ ,  where x** := ~ ~ = 1  x~ (note that x~* is 
decreasing). In our case now set Ai := 1/(1/Ar( i))** . Then (3) and (4) imply 

for all i and some C > 0 

x)**(T: En ~ En)A~ <_ C[[TIIE[E,I, 

which by (5) gives 

A*k*(T)Ak <_ CIITllE[E,], 

and (4) follows by IAk(T)I = A~(T) < A~*(T). I 

3. E s t i m a t e s  for  c o t y p e  q spaces  

To fill (6) and (4) with a little life, we first consider spaces of cotype q. A Banach 

space X is said to be of cotype q, 2 _< q < cc if there exists a constant C > 0 

such that  for arbitrarily many x~, . . .  ,xn E X 

Q~=l .~l/q (~Ol n 2 ) 1 / 2  
(8) Ilxkl[ q)  <_ C ~ rk( t)xk x d t  , 

k=l 

where as usual rk denotes the k-th Rademacher function on [0, 1]. It is well- 

known that fp, 1 _< p < ee is of cotype max(2,p), and for further examples and 

references we refer to [7, Chapter 11]. 

LEMMA 5: Let  X be a Banach lattice and 2 <_ q < oe. Then X is of  cotype q i f  

and only i f  X is (s 2)-concave. 

Proof'. This is an immediate consequence of Maurey's generalization of the 

Khintchine inequality (cf. [17, 1.d.6]) together with [17, 1.f.9]. | 

PROPOSITION 6: Let E be a Banach sequence space of cotype q, 2 <_ q < oo. 

Then there exists a constant C > 0 such that for all n and every complex n x n 

matrix  T = (rij), 

(9) Aeq (T) _< Clog(l + n)I/q]ITllE[E, 1, 

and for all 1 < k < n, 

(10) [Ak(T)lk 1/q <_ C]ITllE[E'I" 



Vol. 132, 2002 ORLICZ NORM ESTIMATES FOR EIGENVALUES OF MATRICES 51 

Proo~ (9) follows from (6), the preceding lemma and the easy calculation 

[I ~--~i~=1 1/Aeq (i)ei]ltq _< log(1 + n) 1/q. (10) follows from (7), the preceding lemma 

1 Eki~_l i -1 /q  ~ C" k -1/q for some c > O. II and the easy calculation ~ 

4. E s t i m a t e s  for  u n i f o r m l y  convex  spaces  

As we will see for Orlicz sequence spaces later on, the notion of cotype is often not 

optimal for our estimates. For a real Banach space X, the modulus of convexity 

(ix (x), 0 < e _~ 2 of X is defined by 

(ix(x) := inf{1 - IIx + y l l /2 ;x , y  E X ,  Ilxll = IlY[I = 1 ,1Ix -  Yll = c}. 

X is said to be uniformly convex if (ix (c) > 0 for every x > 0. In this case, the 

modulus of convexity (ix is equivalent (on (0, 2]) to a canonic Orlicz function 5x 

(cf. [17, pp. 65ff]), and t2 ~ e~x. 

It is known (see [17, p. 78] or [2, pp. 310-311]) that if a Banach space X 

has modulus convexity of power type q, for some q >_ 2 (resp., modulus of 

smoothness of power type p, for some 1 < p <_ 2), i.e., (ix (~) _> c~q (resp., 

p(T) := suP0<~_< 2 7C/2 -- (iX' (C) < CrP), then X is of cotype q (resp., is of type 

p). Furthermore, Pisier (see [20] or [2, pp. 273 296]) proved that  every super- 

reflexive Banach space admits two equivalent norms, one which yields a space 

with modulus of convexity of power type q, for some q >_ 2, and one which 

yields a space with modulus of smoothness of power type p, for some 1 < p < 2. 

This implies that every super-reflexive, and in particular every uniformly convex 

space, is of type p, for some p > 1, and cotype q, for some q < oc. Hence, by 

the well-known fact (see [17, p. 92]) that every Banach lattice, which is of type p 

for some p > 1, is q-concave for some q < oc, we conclude that  every uniformly 

convex Banach lattice has finite concavity. 

The content of the following lemma is essentially due to Figiel and Pisier [10], 

but we nevertheless state a proof for the convenience of the reader. One may use 

similar ideas to obtain an analogue for complex Banach spaces and the complex 

modulus of convexity using the results of [8] and [4]. We leave the details to the 

interested reader. 

LEMMA 7: Let X be a uniformly convex Banach space. Then X is Of Sx-cotype, 

i.e., there exists C > 0 such that for arbitrarily many x l  . . . .  ,Xn C X 

(11) <_ C E r k ( t ) x k  x d t )  . 
k ~ l  5x k ~ l  
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Moreover, i f  X is a uniformly convex Banach lattice, then X is (s 2)-concave. 

Proofi Denote by L2(X) the vector-valued L2-space with respect to [0, 1], the 
Lebesgue-measure and X. Then as in the proof of [17, 1.e.16] (based on a result 
of Kadec [13]) we conclude that for all Xl , . . . ,  xn in X such that 

~ l n 

( II~-~.rk(t)xkll2x) 1/u ~ 2 
k=l  

one has E;--15L2(X)([lxk[[X) --~ 1. Since 5L2(X) is equivalent to 5x (see e.g. [17, 
1.e.9]) and therefore equivalent to ~x, this implies that there exists a constant 

K > 0 such that for all X l , . . . , x n  in X with (f~HE'~=lrk(t)xkH2x)l/2 <_ t i  

one has )-]~=1 "SX([[xk[[x) _< 1 which implies (11). The second statement follows 
from the fact (see above) that every uniformly convex Banach lattice has finite 
concavity, together with Maurey's generalization of the Khintchine inequality. 

With these tools we are able to prove the following estimate: 

PROPOSITION 8: Let E be a uniformly convex Banach sequence space. Then 

there exists a constant C > 0 such that for all n and every complex n x n matrix 

T = (~j) ,  

(12) A~7~ (T) _< Clog(1 + n)IIT[IE[E,], 

where 5E is some Orlicz function equivalent to the modulus of  convexity 5E 

of E.  

Proos Since by Lemma 7 the lattice E is (g~-E,2)-concave, the general 
estimate (6) leaves us with proving that for every Orlicz function ~ we have 

II ~-]~inl 1/Ae~(i)eillG <_ log(1 + n). Without loss of generality we may assume 

that ~ is strictly increasing. Then an easy calculation shows Ae~ (i) = 1/~ - I  (1/i). 

Since for c = 1 + log n we have r > 1 for every n, it follows by the convexity of 

that 
n 1 n 1 

E~(~-l(1/ i) /g)i=l  -< ~ i:~..1 - =  z -< 1. 

This implies by the definition of the Orlicz norm that 

fip-l(1/i)ei ~, < l + l o g n ,  
i----1 
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which completes the proof. I 

Since the modulus of convexity may vary heavily under renorming whereas the 

right-hand side in (12) does not (up to a constant, independent of the dimension 

and the matrix), one may improve the above estimate for a given Banach sequence 

space by suitable renormings. 

5. E s t i m a t e s  for Lo r e nt z  and  Orlicz n o r m s  

As a first concrete example we consider Lorentz sequence spaces. Let 1 < p < oc 

and let (Wn) be a non-increasing sequence of positive numbers such that wl = 1, 

l imn_~  wn = 0 and ~n=l~ wn = c~. The symmetric Banach sequence space of all 

sequences of scalars x = (Xn) for which IIxN := sup.(En% 1 IX,(n)]Pwn) lip < oo, 

where 7r ranges over all the permutations of integers, is denoted by d(w,p) and 

it is called a Lorentz sequence space. 

PROPOSITION 9: Let d(w,p) be a Lorentz space. Assume that 2 <_ p < c~ and 

the sequence (Wn) is such that S ( kn  > cS(k)S(n) )  for some c > 0 and all k ,n ,  
n where S(n)  = Y~i=l wi. Then there exists C > 0 such that for all n and every 

complex n x n matrix T = (v,~j) 

AGs (T) < Clog(1 + n)LlTlld(w,p)[d(~,p),], 

where S(t)  is a strictly increasing function on [0, oo) coinciding with S(n) for 

t = n and ~s(c)  an Orlicz function equivalent to the function 1 /S - l (1 /eP) .  

Prooi~ Altshuler in [1] proved that  d(w,p) under the regularity assumption is 

uniformly convex and that  its modulus of convexity is equivalent to the function 

1/S- I (1 /~P) ,  hence the result follows immediately from (12). | 

Known estimates for the moduli of convexity of Orlicz sequence spaces allow 

us to prove the following result: 

PROPOSITION 10: Let ~ be an Orlicz function such that the function f ( t )  = 

~( t ) / t  2, t > 0 is almost non-decreasing, i.e., there exists a constant K > 0 such 

that f ( s )  <_ K f ( t )  provided s <_ t. 

(i) I f  ~ is supermultiplicative, then there exists a constant C > 0 such that for 

all n and every complex n • n matrix  T = (rij) 

(13) AG(T ) <_ Clog(1 + n)IITI[G[G.]. 
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(ii) I f  ~ is submultiplicative,  then there exists a constant  C > 0 such that  for 

all n and every complex  n x n matr i x  T = ( T i j )  

(14) AeT(T ) < Clog(1 + n)[[T[[e~[e~.], 

where ~ is some Orlicz function equivalent to the function g(t) = 1 / ~ ( 1 / t ) .  

Proof: Again we deduce the desired statements from (12). The general condition 

on p implies that ~ ( t ) / t  --+ oc as t --+ co. Thus ~. takes finite values, and by the 

supermultiplicativity, respectively, submultiplicativity we have that ~, ~.  C A2. 

This implies that ~ = ~ . ,  hence I]T'ei][e,~ = I] ~-]~=1 Tijej  ]lgv." Furthermore, it 
was shown in [9, Corollary 22] and [18] that ~ admits an equivalent renorming 

such that for some a, b, c > 0 one has 5e~ (t) >_ a•(bt) on [0, c], where 

t 2 ~(uv) 
r -- inf 

t < ~ < l < v - ,  u s ~ ( v )  

The general condition on ~ yields that there exists d > 0 such that r _> 

d~(t)  if p is supermultiplicative, which implies (i), and ~(t) _> dg(t) if ~ is 

submultiplicative. The general condition on ~ also gives, similar to above, that 

g ( t ) / t  --+ co as t --+ oc which implies that g is equivalent to some Orlicz function 

which yields (ii). | 

Note that the condition "f(t)  = ~ ( t ) / t  2 is almost non-decreasing" is equivalent 
to the condition "f(t)  -- ~(v~) is equivalent to a convex function in a neighbor- 

hood of zero" which is equivalent to f~ being 2-convex. Hence, our assumptions 

imply that  in both cases f~ is of type 2 (cf. [17, 1.f.17]). 

6. Or l i cz  n o r m  e s t i m a t e s  w i t h  n o  l o g a r i t h m i c  t e r m s  

In order to obtain estimates with no logarithmic terms, a certain product trick is 

needed. For a scalar sequence x = (Xl , . . . ,  Xn, 0, 0 , . . . )  with only finitely many 

non-zero entries we define 

X Q X  :---- ( X l X l , . . .  , x l x n , , . .  , x n x l , . . .  , x n x n , O , O  . . . .  ), 

and for a complex n x n matrix T = (T/j) we denote its Kronecker/tensor product 

(see [11, 4.2.1]) by 

�9 �9 �9 

T | T := \ r n l T  . . .  "rnnT / 
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For our purposes we need a generalization of the well-known notions of upper and 

lower p-estimates (cf. [17, pp. 82-84]). Let E be a Banach sequence space and X 

a Banach lattice. X is said to satisfy an upper, respectively, lower E-estimate if 

there exists C > 0 such that for arbitrarily many Xl , . . .  ,Xn E X 

n 

sup Ixkl < c .  ~ l lxk l lxe~  E' 
l < k < n  X k = l  

(15) 

respectively, 

(16) ~-~ lLxklLx~k E <- C . ~ lxkl x" 
k = l  k = l  

If E itself satisfies an upper, respectively, lower E-estimate, then we denote by 

UE, respectively, lE, the infimum over all C > 0 satisfying (15), respectively, (16). 

LEMMA 11: Let E and F be symmetric Banach sequence spaces and T = (Tij) 

be a complex n • n matrix. 

(i) If E satisfies a lower E-estimate, then 

(17) AE(T) 2 < lEAE(T | T). 

(ii) If  E satisfies an upper E-estimate and F an upper F-estimate, then 

(18) [[T| T[]E[F] _< UEUFHTll2E[F]. 

Proo~ (i) It is easy to see that the set of eigenvalues of T | T equals 

{Ai(T)Aj(T); 1 < i , j  < n} and that the multiplicity of each of these products is 
the product of the multiplicities of Ai(T) and Aj(T), respectively (see e.g. [11, 

4.2.12]), hence it is enough to show that  []xll ~ _< IE[[x | X[[E whenever x is a 
n finite sequence. Let x = ~i=1 xiei; then 

n n n 

x | x : E E : E 
j = l  i=1  j = l  

where yj := xj ~ i n l  Xiei+(j_l)n a r e  pairwise disjoint. Hence, by the lower E- 

estimate and the symmetry of the norm in E 

n n n 

IIx | = ~ lYjl E >- I~x ~ X J  ~X~e~§ Eej Z 
j = l  j = l  i=1  

n 2 

= 1E 1 ~ xiei ~z" 
i=1  
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(ii) It is (T | T ) e j + ( i _ l )  n ~- ~-~;=1 Egn=l 7"kiT~Jeg+(k-1)n, hence, by the upper 
F-estimate and the symmetry of the norm in F,  

[ [ (T  | T)ej+(i_l)n[[F : E ( Tki E T~Jeg+(k-1)n) F 
k : l  g ~ l  

: 1SUPn [Tkil ~ TgJeg+(k--1)n F 
e=l 

n n 
~-- UF E]Tkil" ETeJee+(k-1)n F ek F 

k-~l g~-i 

= UF ~ Tkiek F ~ T~jCe F" 
k----1 g----1 

With this we obtain, by the upper E-estimate and the symmetry of the norm 

in E, 

i = 1  j = l  

~ UF ~ (  ~Tkiek F ~  ~Tgjeg FeJ+(i--l)n) E 
i = 1  k = l  j = l  g = l  

n n n 

k----1 j----1 g----1 

j = l  k = l  

and obviously, the last term is equal to the right side of (18). 1 

This now enables us to prove our main result as announced in the abstract. 

For an Orlicz function ~ let g: [0, co) -+ [0, co) be defined by g(0) = 0 and 

9(t) = 1/~(1/ t ) ,  t > 0. Under the assumptions of the forthcoming theorems, g is 

equivalent to some Orlicz function, which shall be denoted by ~ henceforth. Note 

that  in this case and if ~ is supermultiplicative, ~ is equivalent to the function 

from the abstract, the minimal submultiplicative function dominating ~ defined 

by ~(t) := sups>0 ~(s t ) /p(s ) ,  t >_ O. 

THEOREM 12: Let ~ be an Orlicz function such that the function f ( t )  = ~( t ) / t  2 

is almost non-decreasing. 

(i) I f  ~ is supermultiplicative, then there exists a constant C > 0 such that for 
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all n and every n • n mat r ix  T = (vii) 

(19) Ae, (T) <_ CIITlle-~te~.l. 
(ii) I f  ~ is submultiplicative, then there exists a constant C > 0 such that  for 

a11 n and every n • n mat r ix  T = (Tij) 

(20) Ae~(T) _< C[[T[[e~,[t(,g).]. 

Proof." (i) Since I[" I[e~ < D[[ �9 7 for some constant  D > 0, we obtain by (13) 

(21) Ae. (T) _< C .  log(1 + n) "llTIle;te~.l 
for some constant  C > 0 independent  of n E N and T E C ~ • By Lemma 7 

and what  was said in the proof  of Proposi t ion 10 we conclude tha t  g~ is (g~, 2)- 

concave and therefore satisfies a lower g~-estimate, which implies by dual i ty tha t  

g~. satisfies an upper  g~ -estimate.  Since ~ is equivalent to a submultiplicative 

function, e 7 satisfies an upper  g~-estimate (cf. [6]). Together  with (21) (for T |  

instead of T)  and Lemma 11 this gives 

At,  (T) < 2(Clog(1 + n) ) l /2 .1eue . jue~ .  "ltTIle-;te~.l 
and, by induction, for all k E N 

At,  (T) < 21/2k-1 (C log(1 + n)) 1/2k. ( l eueTue~  * )~--~=1 (1/2i) �9 IlZlleTte~.], 

which implies (19) with C = le, u e y u e , .  Par t  (ii) follows immediately from (i) 
% 

since qo can be chosen to be ~. II 

For a power function ~(t)  -- t p, p _> 2 one has ~(t)  -- ~o(t) = t p and qa. (t) -- ct p' 

(*) for some c > 0, hence gv = g-ff = gp and g~. = gp,. Since lep = uep = 

utp, = 1, we obtain (after deleting any constant  caused by the constant  in ( . )  

by the product  trick) the classical result due to [21] (for p -- 2) and [12] (for an 

elementary proof  see [3]): 

COROLLARY 13: Let  2 < p < oc. Then for all n and every n x n matr ix  T = ( T i j )  

I,Xi(T)I p ___ ir~jl p ' \ p /p ' \  
1/p 

We conclude with a result for the cotype q case. 
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THEOREM 14: For 2 <_ q < c~ let ~ be an Orlicz function which satisfies 

~(At) < KAo'r for some K > 0 and ali A >_ 1, t >_ O. 

(i) I f  ~ is supermultiplicative, then there exists a constant C > 0 such that for 

all n and every n x n matr ix  T = (rij) 

Aeq (T)  < CllTlle-~[e~.]. 
(ii) I f  ~ is submultiplicative, then there exists a constant C > 0 such tha t  for 

all n and every n x n mat r ix  T = (7-@ 

heq (T)  < C[[Tl[e~[e(.ji.]. 

Proof'. t?~ is of eotype  q if and only if ~ satisfies the above condition (cf. [14]), 

and in this case ~ is defined. If  ~ is supermult ipl icat ive,  then by [6] it satisfies a 

lower /~ -es t ima te ,  g~. an upper  g~. -es t imate  and g~ an upper  g~-estimate.  Then  

(i) follows by (9) and L e m m a  11 as in the preceding proof. The  proof  of (ii) is 

similar. II 
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