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ABSTRACT

Let ¢ be a supermultiplicative Orlicz function such that the function
t = o(+/1) is equivalent to a convex function. Then each complex n X n
matrix T = (7;5);,; satisfies the following eigenvalue estimate:

IA(T)izille, < Clri)izille,, )i=1lles-

Here, ¢, stands for Young’s conjugate function of ¢, © is the minimal
submultiplicative function dominating ¢ and C > 0 a constant depending
only on ¢. For the power function ¢(t) = tP, p > 2 this is a celebrated
result of Johnson, Koénig, Maurey and Retherford from 1979. In this
paper we prove the above result within a more general theory of related
estimates.
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1. Preliminaries

We use standard notation and notions from Banach space theory. For 1 < p < oo
its conjugate number p’ is defined by the equality 1/p+1/p’ = 1. If X is a Banach
space, then X’ denotes its dual space, and for Banach spaces X and Y we mean
by T: X — Y that T is a linear and continuous operator between these two
spaces, with dual operator T": Y’ — X'; the collection of all such operators T is
denoted by L(X,Y). If we write X — Y, then we assume that X C Y and that
the identity map id: X — Y is continuous. For an operator T: X — X on an
n-dimensional Banach space X we denote by A (T),..., A\x(T) the collection of
its eigenvalues, counted according to their algebraic multiplicity and arranged in
decreasing order of their absolute values, i.e., [\ (T) > [A(T)| 2 --- > |A (D)}

By a Banach sequence space we mean a complex Banach lattice E modelled
on the set of natural numbers N which contains a sequence z with suppxz = N.
E is said to be symmetric provided that ||z|g = ||z*||g for all z € E, where z*
denotes the decreasing rearrangement of . The n-th standard unit vector in F is
denoted by e,, and the linear span of the first n standard unit vectors {equipped
with the induced norm) by E,.

For the theory of Orlicz functions and Orlicz spaces we refer to [16]. Two func-
tions f,g: [0,00) — [0,00) are called equivalent whenever there exist constants
a,b,c,d > 0 such that f(t) < ag(bt) < cf(dt) for all ¢ € [0,00). A continu-
ous and convex function ¢: [0,00) — [0,00) with ¢p~1({0}) = {0} is called an
Orlicz function. It is said to be submultiplicative, respectively, supermultiplica-
tive, if there exists a constant C' > 0 such that for all s,t > 0 the inequality
o(st) < Cp(s)p(t), respectively, p(st) > Cyp(s)p(t), holds. An Orlicz function
¢ satisfies the Ay-condition, written ¢ € Ag, if sup,>q9(2t)/p(t) < co. The
function @,: [0,00) — [0, 00] defined by

@4 (t) := sup(st — ¢(s))
$>20

is Young’s conjugate function of ¢ which takes finite values provided that
limy_, o0 @(t)/t = o0.
Recall that for an Orlicz function ¢ the vector space

£, = {xeCY, Z<p(|a:n|/e) < oo for some ¢ > 0}

n=1

together with the Minkowski functional

llzlle, := inf{e > 0; Z ¢(lznl/e) < 1}
n=1
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forms a symmetric Banach sequence space—the Orlicz sequence space associated
with . It is an easy excercise to see that equivalent Orlicz functions give the
same Orlicz spaces (with equivalent norms).

2. General estimates

Let E, F and G be Banach sequence spaces and T' = (73;) be an n x n matrix.
Our general aim is to give upper estimates of

E

AR(T) = H i)\i(T)ei
=1

in terms of

eH
a’llr

n n
ITleer = || D || D2 mses
j=1 i=1

To start, we need two further definitions. Let X be a Banach lattice and E be a
Banach sequence space such that £; < E. Then X is said to be (E, 2)-concave,
if there exists a constant C > 0 such that for arbitrarily many z1,...,z, € X

(1) llgnxknxekub, < cl!(élxklz)wllx-

For E = ¥, this gives the well-known notion of 2-concavity, and more generally,
for E = £,4, 2 < g < oo the notion of cotype g as we will see later on.

For a Banach sequence space F such that ¢, — E an operator T: X - Y
between Banach spaces is called (E, 2)-summing, if there exists a constant C' > 0
such that for finitely many and arbitrary xy,...,z, € X the following inequality
holds:

n n 1/2
@) IS ITzlve] <c sw (F'EP)

kzzjl E i<t <k2_:_1 )
In this case we denote by 7g 2(7T) the smallest constant C' > 0 satisfying (2).
The particular case E = £, r > 2 gives the classical notion of absolutely (r,2)-
summing operators (cf. [7, Chapter 10]).

PRroOPOSITION 1: Let E and F be Banach sequence spaces such that £5 < F and
E is (F,2)-concave. Then there exists C > 0 such that for all Banach spaces X
and allT: X — E,

3) mpa(T: X — Ey) < C” ; 1T exl|xoes|
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Proof: Take x1,...,2,, € X. Then

n n
ITzille = Y Tex(ziexlle = Y zk(zi)exlE,

k=1 k=1

where x} := T"e; € X'. For each k for which z}, # 0, set 2}, := z}/||z}|lx € X'
and z;, := 0 otherwise, and let y; := Y ¢_, ||z}l x 2, (z:)ex € E. By the (F,2)-
concavity of E there exists C' > 0 such that

|35 irzioe], = | St
sc(Zwh),
=[St (S 0r) e

sup (le (@) )1/2'”2“5%”)('%”19,

IIE’IIx'<1

which gives (3). |

To proceed we need the following result from [5] which generalizes an inequality
due to Konig. For the sake of completeness we indicate a short proof. Recall
that for an operator T: X — Y between Banach spaces the n-th approximation
number a,,(T') is defined by

an(T) := inf{{|T — Tp,||; Tn: X — Y has rank < n},
and the n-th Weyl-number z,(T) by
Zn(T) := sup{an(TS); ||S: €2 = X|| < 1}

PRrROPOSITION 2: Let E be a Banach sequence space such that {5 — E. Then
for every (E,2)-summing operator T and all n

(4) Ap(n)z,(T) < mp2(T),
where Ap(n) := || > p_; exllE-

Proof: Consider first the case where the operator T is defined on 5, say T: 3 —
Y for some Banach space Y. The proof of (15, 2.a.3} or [19, 2.7.1] yields that



Vol. 132, 2002 ORLICZ NORM ESTIMATES FOR EIGENVALUES OF MATRICES 49

for ¢ > 0 there exists an orthonormal system (fi) in €2 such that ax(T) <
(1 +&)||T frlly for all k (a result due to Pisier). This implies

n
H Zak(T)ekHE < mea(T),
k=1

since by Bessel’s inequality sup”I,”[leZZ:l I(z'|fx)]?> < 1. Now if for an
arbitrary (E,2)-summing operator T: X — Y and ¢ > 0 we choose S: {5 —+ X
with ||S]] = 1 and 2,(T) < (1 + €)a,{TS), then by the monotonicity of the
approximation numbers

(1497 Ap(m)zn(T) < Ap()an(TS) < || Y- ax(TS)ex]
k=1

< wp2(TS) < mpe(T),
which gives the claim. |

The following crucial inequality connecting eigenvalues and Weyl-numbers is
due to Weyl (for E = €,) and Konig (general case, see [15, 2.a.8]). For simplicity
we state a finite-dimensional version only. Let F be a symmetric Banach sequence
space and T: X — X an operator on an n-dimensional Banach space X. Then

(5) Ap(T) < 2@” ixk(T)ekHE
k=1

Combining (3), (4) and (5), we immediately obtain the following general estimate
(by considering a matrix T = (7;;) as an operator T: E,, — E,):

PROPOSITION 3: Let E and F be Banach sequence spaces such that F is sym-
metric with 5 — F and E is (F,2)-concave. Then there exists a constant C > 0
such that for all n and every complex n x n matrix T = (1;;)

©) cuZ e ele I ee

The use of Marcinkiewicz sequence spaces enables us to give upper bounds for
single eigenvalues.

PROPOSITION 4: Let E and F be Banach sequence spaces such that F is
symmetric with £ — F and E is (F,2)-concave. Then there exists a constant
C > 0 such that for all n, every complex n x n matrix T = (7;;) and all1 < k < n

k
(7) [Ae(T k Z

| —_
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Proof:  For an increasing sequence ();) of positive scalars the symmetric
Marcinkiewicz sequence space my is the space of all scalar sequences © = (x;)

. i 1 1 .
for which ||z(|m, := sup;»; £]* A < oo, where 27* := 3 7._, ] (note that z}* is

decreasing). In our case now set A; := 1/(1/Ap(i))** . Then (3) and (4) imply
for all  and some C' > 0

CIT;”(T E,— En))\z < C”T”E'[E’]a
which by (5) gives
AL (M)A < CIT gienys
and (4) follows by |Au(T)| = A\;(T) < A (T). |

3. Estimates for cotype ¢ spaces

To fill (6) and (4) with a little life, we first consider spaces of cotype q. A Banach
space X is said to be of cotype ¢, 2 < ¢ < oo if there exists a constant C > 0
such that for arbitrarily many x1,...,2, € X

1/2

®) (2 ) <o [ grk(t)xkuidt) ,

where as usual r; denotes the k-th Rademacher function on [0,1]. It is well-
known that £,, 1 < p < 0o is of cotype max(2,p), and for further examples and
references we refer to (7, Chapter 11].

LEMMA 5: Let X be a Banach lattice and 2 < q < oco. Then X is of cotype q if
and only if X is ({4, 2)-concave.

Proof: This is an immediate consequence of Maurey’s generalization of the
Khintchine inequality (cf. [17, 1.d.6]) together with [17, 1.£.9]. |

PRoOPOSITION 6: Let E be a Banach sequence space of cotype ¢, 2 < ¢ < o0.
Then there exists a constant C > 0 such that for all n and every complex n x n
matrix T = (735),

(9) A, (T) < Clog(1+ )"/ T| g
and for all1 <k <n,

(10) IAe(T) &Y < CIT || gie)-



Vol. 132, 2002 ORLICZ NORM ESTIMATES FOR EIGENVALUES OF MATRICES 51

Proof:  (9) follows from (6), the preceding lemma and the easy calculation
13201 1/Ae, (i)eslle, < log(1+n)Y/4. (10) follows from (7), the preceding lemma
and the easy calculation %Zfﬂ i~Y9 < ¢ k=9 for some ¢ > 0. |

4. Estimates for uniformly convex spaces

As we will see for Orlicz sequence spaces later on, the notion of cotype is often not
optimal for our estimates. For a real Banach space X, the modulus of convexity
dx(e), 0 <& <2of X is defined by

ox(e) =1inf{1 ~ |lz + yl|/22,y € X, ||zl = |lyl| = 1, ||l — y|| = €}.

X is said to be uniformly convex if éx () > 0 for every £ > 0. In this case, the
modulus of convexity dx is equivalent (on (0,2]) to a canonic Orlicz function §x
(cf. [17, pp. 65f]), and £ — ng.

It is known (see [17, p. 78] or [2, pp. 310-311]) that if a Banach space X
has modulus convexity of power type ¢, for some ¢ > 2 (resp., modulus of
smoothness of power type p, for some 1 < p < 2), ie, dx(g) > Ce? (resp.,
p(T) 1= SUpgceco T€/2 — Oy (€) < C7P), then X is of cotype ¢ (resp., is of type
D). Furthermoi*—e, Pisier (see [20] or [2, pp. 273-296]) proved that every super-
reflexive Banach space admits two equivalent norms, one which yields a space
with modulus of convexity of power type ¢, for some ¢ > 2, and one which
yields a space with modulus of smoothness of power type p, for some 1 < p < 2.
This implies that every super-reflexive, and in particular every uniformly convex
space, is of type p, for some p > 1, and cotype ¢, for some ¢ < co. Hence, by
the well-known fact (see [17, p. 92]) that every Banach lattice, which is of type p
for some p > 1, is g-concave for some ¢ < oo, we conclude that every uniformly
convex Banach lattice has finite concavity.

The content of the following lemma is essentially due to Figiel and Pisier [10],
but we nevertheless state a proof for the convenience of the reader. One may use
similar ideas to obtain an analogue for complex Banach spaces and the complex
modulus of convexity using the results of [8] and [4]. We leave the details to the
interested reader.

LEMMA 7: Let X be a uniformly convex Banach space. Then X is of gx -cotype,
i.e., there exists C' > 0 such that for arbitrarily many x,...,x, € X

(11) ”ZkaHXek <C / HZT’“ a:k“ dt)l/z.
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Moreover, if X is a uniformly convex Banach lattice, then X is (¢;_,2)-concave.

6 b
Proof: Denote by Ly(X) the vector-valued La-space with respect to [0,1], the
Lebesgue-measure and X. Then as in the proof of [17, 1.e.16] (based on a result
of Kadec [13]) we conclude that for all x1,...,z, in X such that

1 n
([ I3 el <2
0 k=1

one has Y, _; 8z, (x)(lzellx) < 1. Since 81, (x) is equivalent to 6x (see e.g. [17,
1.e.9]) and therefore equivalent to dx, this implies that there exists a constant
K > 0 such that for all zy,...,z, in X with (fol IS r re@®ail%)? < K
one has > p_, dx(|lzk]lx) < 1 which implies (11). The second statement follows
from the fact (see above) that every uniformly convex Banach lattice has finite
concavity, together with Maurey’s generalization of the Khintchine inequality.
|

With these tools we are able to prove the following estimate:

PRrROPOSITION 8: Let E be a uniformly convex Banach sequence space. Then

there exists a constant C' > 0 such that for all n and every complex n x n matrix
T = (1),

(12) Ae, (T) < Clog(1+n)| Tl e,

where 6~E is some Orlicz function equivalent to the modulus of convexity g
of E.

Proof:  Since by Lemma 7 the lattice E is (égE,
estimate (6) leaves us with proving that for every Orlicz function ¢ we have
| 3o51 1/ A, (d)eille, < log(l+n). Without loss of generality we may assume
that ¢ is strictly increasing. Then an easy calculation shows Ay, (i) = 1/¢~(1/1).

Since for € = 1 + logn we have € > 1 for every n, it follows by the convexity of

@ that
Z (e~ 1(1/i)fe) < Z <1

This implies by the definition of the Orlicz norm that

[ e /e

2)-concave, the general

<1+logmn,
£



Vol. 132, 2002 ORLICZ NORM ESTIMATES FOR EIGENVALUES OF MATRICES 53

which completes the proof. |

Since the modulus of convexity may vary heavily under renorming whereas the
right-hand side in (12) does not (up to a constant, independent of the dimension
and the matrix), one may improve the above estimate for a given Banach sequence
space by suitable renormings.

5. Estimates for Lorentz and Orlicz norms

As a first concrete example we consider Lorentz sequence spaces. Let 1 < p < 00
and let (w,) be a non-increasing sequence of positive numbers such that wy = 1,
lim,, o0 w, = 0 and 2211 wy, = 00. The symmetric Banach sequence space of all
sequences of scalars & = (z) for which ||z|| := sup, (3 re |Zr(n)[Pwn) VP < oo,
where 7 ranges over all the permutations of integers, is denoted by d(w,p) and

it is called a Lorentz sequence space.

PROPOSITION 9: Let d(w,p) be a Lorentz space. Assume that 2 < p < oo and
the sequence (wy,) is such that S(kn > ¢S(k)S(n)) for some ¢ > 0 and all k,n,
where S(n) = }_;_, w;. Then there exists C > 0 such that for all n and every
complex n x n matrix T = (;;)

Ay, (T) < Clog(1 + n)||T || a(aw,p)(d(w )]s

where S(t) is a strictly increasing function on [0,00) coinciding with S(n) for
t =n and ¢g(e) an Orlicz function equivalent to the function 1/S~1(1/P).

Proof:  Altshuler in [1] proved that d(w,p) under the regularity assumption is
uniformly convex and that its modulus of convexity is equivalent to the function
1/S71(1/¢P), hence the result follows immediately from (12). |

Known estimates for the moduli of convexity of Orlicz sequence spaces allow
us to prove the following result:

PROPOSITION 10: Let ¢ be an Orlicz function such that the function f(t) =
@(t)/t?, t > 0 is almost non-decreasing, i.e., there exists a constant K > 0 such
that f(s) < K f(t) provided s < t.
(i) If ¢ is supermultiplicative, then there exists a constant C > 0 such that for
all n and every complex n X n matrix T = (7;;)

(13) Ag‘p (T) < C’log(l + TL)HT“&P[@W].
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(ii) If ¢ is submultiplicative, then there exists a constant C' > 0 such that for
all n and every complex n x n matrix T = (7;;)

(14) Ae(T) < Clog(1 + n)||Tle, e

v*]’

where @ is some Orlicz function equivalent to the function g(t) = 1/p(1/t).

Proof:  Again we deduce the desired statements from (12). The general condition
on ¢ implies that ¢(t)/t — oo as t — 0o. Thus ¢, takes finite values, and by the
supermultiplicativity, respectively, submultiplicativity we have that ¢, v, € As.
This implies that £}, = £,,, hence | T'eille, = || 37, Tije;lle,. - Furthermore, it
was shown in [9, Corollary 22] and [18] that £, admits an equivalent renorming
such that for some a,b, ¢ > 0 one has d(t) > ay(bt) on [0, c], where

. 2 o(uv)
t f — .
Vi) tsuérllgv—l u? o(v)

The general condition on ¢ yields that there exists d > 0 such that ¥(t) >
dp(t) if ¢ is supermultiplicative, which implies (i), and ¥(t) > dg(t) if ¢ is
submultiplicative. The general condition on ¢ also gives, similar to above, that
g(t)/t = co as t — oo which implies that g is equivalent to some Orlicz function
@ which yields (ii). [ |

Note that the condition “f(t) = ¢(t)/t? is almost non-decreasing” is equivalent
to the condition “f(t) = (v/t) is equivalent to a convex function in a neighbor-
hood of zero” which is equivalent to £, being 2-convex. Hence, our assumptions
imply that in both cases ¢, is of type 2 (cf. [17, 1.£.17]).

6. Orlicz norm estimates with no logarithmic terms

In order to obtain estimates with no logarithmic terms, a certain product trick is
needed. For a scalar sequence z = (z1,...,2,,0,0,...) with only finitely many
non-zero entries we define

TR = (T1L1y- -, T1Tpy- ey TnL1y ey Tnlln, 0,0,...),

and for a complex n x n matrix T = (7;;) we denote its Kronecker/tensor product

(see [11, 4.2.1]) by
T11T N TlnT

TRT := :
Tl .. TanT
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For our purposes we need a generalization of the well-known notions of upper and
lower p-estimates (cf. [17, pp. 82-84]). Let F be a Banach sequence space and X
a Banach lattice. X is said to satisfy an upper, respectively, lower E-estimate if
there exists C' > 0 such that for arbitrarily many z1,...,2, € X

n
15 ” sup |zk H §C~“ Tk XekH ,
(15) i loel] 5 €| tdver]
respectively,
n n
(U | telcen ] < €[ Xt
k=1 k=1

If E itself satisfies an upper, respectively, lower E-estimate, then we denote by
ug, respectively, g, the infimum over all C' > 0 satisfying (15), respectively, (16).

LEMMA 11: Let E and F be symmetric Banach sequence spaces and T = (7;5)
be a complex n X n matrix.
(i) If E satisfies a lower E-estimate, then

(17) Ap(T)? <IgAp(T®T).
(ii) If E satisfies an upper E-estimate and F an upper F-estimate, then

(18) IT ® Tl ey < upurl| Tl Ee-

Proof: (i) It is easy to see that the set of eigenvalues of T' ® T equals
{M(T)A;(T);1 < 4,5 < n} and that the multiplicity of each of these products is
the product of the multiplicities of A\;(T) and \;(T'), respectively (see e.g. [11,
4.2.12]), hence it is enough to show that ||z||% < lg|r @ z||g whenever z is a
finite sequence. Let z = - | x;€;; then

n n n
TR = szi$j€i+(j—1)n = Zyj,
i=1

j=11i=1

where y; = z; Z?zl Ti€;y(j—1)n are pairwise disjoint. Hence, by the lower E-
estimate and the symmetry of the norm in F

n n n
le®z|e = ” > L%'IHE 2 151” Z%H > Tty
j=1 j=1 i=1
n
= IEIH inei
=1

Rl

2
=
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(1) It is (T @ T)ejp(i-1)n = D o1 Ot TkiT¢j€o+(k—1)n, hence, by the upper
F-estimate and the symmetry of the norm in F,

(T ® T)ejtii- l)n“F_”Z TkzZTe;6e+(k l)n)
k=1 &=1
ZTﬁje€+(k 1)n
<UFHZ]Tkz ”ZTeyeu(k )n
oS e,
k=1 =1

With this we obtain, by the upper F-estimate and the symmetry of the norm
in F,

:H sup [Thi

o

I'ZZ“ (TeT) €J+(2 1)71”F6J+(’L 1)n

i=1 j=1
n n
<l 35 W“an 2 |
o g | e SIS el ol
< usuel [ Srer] ]
EUF ; ; kik|| €|
and obviously, the last term is equal to the right side of (18). ]

This now enables us to prove our main result as announced in the abstract.
For an Orlicz function ¢ let g: [0,00) — [0,00) be defined by g(0) = 0 and
g(t) = 1/p(1/t), t > 0. Under the assumptions of the forthcoming theorems, g is
equivalent to some Orlicz function, which shall be denoted by @ henceforth. Note
that in this case and if ¢ is supermultiplicative, ¢ is equivalent to the function @
from the abstract, the minimal submultiplicative function dominating ¢ defined
by B(t) := sup,5q ¢(st)/¢(s), £ > 0.

THEOREM 12: Let ¢ be an Orlicz function such that the function f(t) = ¢(t)/t>
is almost non-decreasing.

(i) If ¢ is supermultiplicative, then there exists a constant C > 0 such that for
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all n and every n x n matrix T = (7y;)

(19) A, (T) < C||T||z;[z

o]

(ii) If ¢ is submultiplicative, then there exists a constant C' > 0 such that for
all n and every n x n matrix T = (;;)
2 A (D) L C|T -1
(20) 89( ) <l ||e¢[em*]

Proof: (i) Since || - |l¢, < D|} - ||¢~ for some constant D > 0, we obtain by (13)
(21) Ag (T) < C-log(l+n)- |[T||z;[ew]

for some constant C' > 0 independent of n € N and T € C***., By Lemma 7
and what was said in the proof of Proposition 10 we conclude that ¢, is (£, 2)-
concave and therefore satisfies a lower £-estimate, which implies by duality that
¢,, satisfies an upper £, -estimate. Since ¢ is equivalent to a submultiplicative
function, £ satisfies an upper {-estimate (cf. [6]). Together with (21) (for T®T
instead of T') and Lemma 11 this gives

A, (T) < 2(Clog(1 + n))*/?- Le, we-uy,, - “T||z;[z,,‘]
and, by induction, for all k € N
Ae, (T) <2777 (Clog(1 +m)2" - (e, ueue, ) Zier /%) - | Tlge .,
which implies (19) with C' = [, ULt - Part (ii) follows immediately from (i)
since & can be chosen to be ¢. |

For a power function ¢(t) = tP, p > 2 one has 3(t) = ¢(t) = t? and ¢, (t) = ct?’
() for some ¢ > 0, hence {, = €5 = £, and {,, = f,. Since lp, = up, =
ug, = 1, we obtain (after deleting any constant caused by the constant in (x)
by the product trick) the classical result due to [21] (for p = 2) and [12] (for an

elementary proof see (3)):
COROLLARY 13: Let 2 < p < co. Then for alln and every n xn matrix T = (7;;)
n 1/p n n A\P/P'\1/p
(Twr) "< (S (Tmr) )"
i=1 j=1 Vi=1

We conclude with a result for the cotype ¢ case.
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THEOREM 14: For 2 < ¢ < oo let ¢ be an Orlicz function which satisfies
w(At) < KX9%(t) for some K > 0 and all A > 1,t > 0.
(1) If ¢ is supermultiplicative, then there exists a constant C' > 0 such that for

all n and every n x n matrix T = (7;5)

A (T) < ClIT e, -

(ii) If ¢ is submultiplicative, then there exists a constant C > 0 such that for

alln and every n x n matrix T = (7;;)

Ae, (T) < CHTHe“,[e(;)_]-

Proof: ¢, is of cotype ¢ if and only if ¢ satisfies the above condition (cf. [14]),
and in this case @ is defined. If ¢ is supermultiplicative, then by [6] it satisfies a
lower £,-estimate, £, an upper /,,_ -estimate and 55 an upper €$-estimate. Then
(i) follows by (9) and Lemma 11 as in the preceding proof. The proof of (ii) is
similar. |

(1]
(2]
(3]
(4]

(5]

(6]

7]

(8]
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